单调队列模板【附例题】

0
10

其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的。

每一个答案只与当前下标的前m个有关,所以可以用单调队列维护前m的个最小值,

考虑如何实现该维护的过程??

显然当前下标\(X\)的\(m\)个以前的元素(即下标小于\(X-M+1\)的元素)肯定对答案没有贡献,所以可以将其从单调队列中删除。

对于两个元素\(A\),\(B\),下标分别为\(a\),\(b\),如果有\(A>=B\)&&\(a<b\)那么B留在队列里肯定优于\(A\),因此可以将\(A\)删除。

维护队首:如果队首已经是当前元素的\(m\)个之前,将\(head\)++,弹出队首元素

维护队尾:比较\(q[tail]\)与当前元素的大小,若当前元素更优\(tail\)++,弹出队尾元素,直到可以满足队列单调性后加入当前元素。

考虑单调队列的时间复杂度:由于每一个元素只会进队和出队一次,所以为\(O(n)\)。

P1440 求m区间内的最小值

P1886 滑动窗口 /【模板】单调队列

P3088[USACO13NOV]Crowded Cows S

#include <bits/stdc++.h>
using namespace std;
int a[2000100];
bool b[2000100];
int q[2000100];//数组模拟队列,更好调试
int head=1,tail=0;
int n,m;
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	for(int i=1;i<=n;i++)
	{
		while(i-q[head]+1>m&&head<=tail)//若头结点在范围外 
		{
			head++;//弹出头结点 
		}
		while(a[i]<a[q[tail]]&&head<=tail)//若当前节点优于尾节点 
		{
			tail--;//弹出尾结点 
		}
		q[++tail]=i;//当前节点入队 
	}
	return 0;
}

利用单调队列,可以优化涉及定长连续子区间求最值的线性dp问题

例题

P1725 琪露诺 琪露诺是最强的!!

P1714 切蛋糕

<

发布回复

请输入评论!
请输入你的名字