后台-插件-广告管理-内容页广告位一(手机)

您现在的位置是:首页 > 编程语言 > pythonpython

Python数据分析入门(十二):数据聚合与分组

2021-04-18 18:38:26python人已围观

简介什么是分组聚合?
如图:



groupby:(by=None,as_index=True)


by:根据什么进行分组,用于确定groupby的组
as_index:对于聚合输出,返回以组便签为索引的对象,仅对DataFrame

df

什么是分组聚合?

如图:

  • groupby:(by=None,as_index=True)

by:根据什么进行分组,用于确定groupby的组

as_index:对于聚合输出,返回以组便签为索引的对象,仅对DataFrame

df1 = pd.DataFrame({'fruit':['apple','banana','orange','apple','banana'],
                    'color':['red','yellow','yellow','cyan','cyan'],
                   'price':[8.5,6.8,5.6,7.8,6.4]})
#查看类型
type(df1.groupby('fruit'))
pandas.core.groupby.groupby.DataFrameGroupBy  #GruopBy对象,它是一个包含组名,和数据块的2维元组序列,支持迭代
for name, group in df1.groupby('fruit'):
    print(name) #输出组名
    apple
    banana
    orange

    print(group) # 输出数据块
       fruit color  price
    0  apple   red    8.5
    3  apple  cyan    7.8
       fruit   color  price
    1  banana  yellow    6.8
    4  banana    cyan    6.4
       fruit   color  price
    2  orange  yellow    5.6

    #输出group类型  
    print(type(group))  #数据块是dataframe类型
    <class 'pandas.core.frame.DataFrame'>
    <class 'pandas.core.frame.DataFrame'>
    <class 'pandas.core.frame.DataFrame'>

#选择任意的数据块
dict(list(df1.groupby('fruit')))['apple']  #取出apple组的数据块
   fruit color  price
0  apple   red    8.5
3  apple  cyan    7.8

聚合

#Groupby对象具有上表中的聚合方法

#根据fruit来求price的平均值
df1['price'].groupby(df1['fruit']).mean()
fruit
apple     8.15
banana    6.60
orange    5.60
Name: price, dtype: float64     
#或者
df1.groupby('fruit')['price'].mean()

#as_index=False
df1.groupby('fruit',as_index=False)['price'].mean()
    fruit    price
0    apple    8.15
1    banana    6.60
2    orange    5.60

"""
如果我现在有个需求,计算每种水果的差值,
1.上表中的聚合函数不能满足于我们的需求,我们需要使用自定义的聚合函数
2.在分组对象中,使用我们自定义的聚合函数
"""
#定义一个计算差值的函数
def diff_value(arr):
    return arr.max() - arr.min()
#使用自定义聚合函数,我们需要将函数传递给agg或aggregate方法,我们使用自定义聚合函数时,会比我们表中的聚合函数慢的多,因为要进行函数调用,数据重新排列
df1.groupby('fruit')['price'].agg(diff_value)
fruit
apple     0.7
banana    0.4
orange    0.0
Name: price, dtype: float64

文章来源:查看

Tags:数据   分组   入门   聚合   分析

很赞哦! ()

后台-插件-广告管理-内容页广告位二(手机)

相关文章

后台-插件-广告管理-内容页广告位三(手机)
后台-插件-广告管理-内容页广告位四(手机)

文章评论

留言与评论(共有 0 条评论)
   
验证码:

本栏推荐

站点信息

  • 文章统计13614篇文章
  • 浏览统计468次浏览
  • 评论统计1个评论
  • 标签管理标签云
  • 统计数据:统计代码
  • 微信公众号:扫描二维码,关注我们